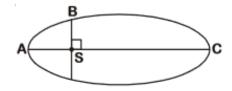
MADE EASY&NEXT IAS GROUP

PRESENT

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Maximum Marks: 720 Time: 3 Hours


NEET - 2018

IMPORTANT INSTRUCTIONS

- 1. The test is of 3 hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 2. Use Blue / Black Ballpoint Pen only for writing particulars on this page/marking responses.
- 3. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 4. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 5. The CODE for this Booklet is KK.
- 6. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- **7.** Each candidate must show on demand his/her Admission Card to the Invigilator.
- **8.** No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- **9.** Use of Electronic/Manual Calculator is prohibited.
- 10. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 11. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 12. The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet.

Section- I (PHYSICS)

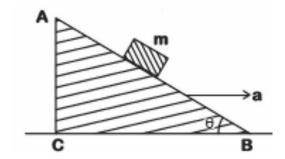
1. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

(1) $K_A > K_B > K_C$

 $K_A < K_B < K_C$ **(3)**

- (2) $K_B < K_A < K_C$ (4) $K_B > K_A > K_C$
- 2. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio K_t : $(K_t + K_r)$ for the sphere is
 - **(1)**
- 5:7
- **(2)** 10:7
- (3)7:10
- A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increase 3. keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - **(1)** Moment of inertia

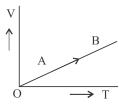
(2) Rotational kinetic energy


(3) Angular velocity

- Angular momentum **(4)**
- If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times large 4. in magnitude, which of the following is not correct?
 - **(1)** Walking on the ground would become more difficult
 - **(2)** Time period of a simple pendulum on the Earth would decrease
 - **(3)** Raindrops will fall faster
 - **(4)** 'g' on the Earth will not change
- 5. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a unifo electric field E. Due to the force qE, its velocity increases from 0 to 6 m/s in one second duration. At tl instant the direction of the field is reversed. The car continues to move for two more seconds under t influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds a respectively
 - **(1)** 1 m/s, 3 m/s

1 m/s, 3.5 m/s**(2)**

(3) 2 m/s, 4 m/s


- 1.5 m/s, 3 m/s**(4)**
- 6. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

- **(1)**
- $a = g\cos\theta$
- **(3)**
- $a = gtan\theta$

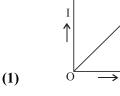
- The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by 7.
 - **(1)**

- $-4\hat{i} \hat{j} 8\hat{k}$ (2) $-7\hat{i} 8\hat{j} 4\hat{k}$ (3) $-8\hat{i} 4\hat{j} 7\hat{k}$ (4) $-7\hat{i} 4\hat{j} 8\hat{k}$
- 8. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - **(1)**
- 0.525 cm
- **(2)** 0.053 cm
- **(3)**
 - 0.521 cm
- 0.529 cm **(4)**
- 9. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

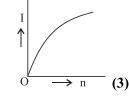
- **(1)**

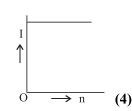
- **(3)**
- 10. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - **(1)**
- **(2)** 12.5 cm
- 13.2 cm **(3)**
- 16 cm
- At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from t 11. Earth's atmosphere?

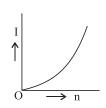
(Given :Mass of oxygen molecule (m) = 2.76×10^{-26} kg)


(Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$)

- **(1)**
- $8.360 \times 10^4 \,\mathrm{K}$ (2) $5.016 \times 10^4 \,\mathrm{K}$ (3)
- $2.508 \times 10^4 \,\mathrm{K}$ (4)
 - $1.254 \times 10^{4} \text{K}$
- The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is 12.
 - **(1)** 20%
- **(2)** 6.25%
- 26.8%
- **(4)** 12.5%
- A carbon resistor of $(47 \pm 4.7) \text{ k}\Omega$ is to be marked with rings of different colours for its identification. T 13. colour code sequence will be
 - Yellow Violet Orange Silver
- **(2)** Yellow - Green - Violet - Gold
- **(3)** Violet – Yellow – Orange – Silver
- **(4)** Green - Orange - Violet - Gold
- A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and interior 14. resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same batte Then the current drawn from battery becomes 10 I. The value of 'n' is
 - **(1)**


20 **(2)**


(2)


- 10 **(3)**
- 9 **(4)**
- **15.** A battery consists of a variable number 'n' of identical cells (having internal resistance 'r'each) which a connected in series. The terminals of the battery are short-circuited and the current I is measured. Which the graphs shows the correct relationship between I and n?

11

16.	An em wave is propagating in a medium with a velocity $V = V\hat{i}$. The instantaneous oscillating electric
	field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave wi
	be along

(1) +z direction (2) -y direction (3) -z direction (4) -x direction

17. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the trefracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic ligentering the prism from the other face will retrace its path (after reflection from the silvered surface) if angle of incidence on the prism is

(1) 45° (2) 30° (3) 60° (4) Zero

18. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object displaced through a distance of 20 cm towards the mirror, the displacement of the image will be

(1) 36 cm away from the mirror
 (2) 30 cm towards the mirror
 (4) 36 cm towards the mirror
 (3) 30 cm away from the mirror

19. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance

(1) 138.88 H (2) 1.389 H (3) 0.138 H (4) 13.89 H

20. An electron of mass 'm' with an initial velocity $V = V_0 i$ ($V_0 > 0$) enters an electric field $E = -E_0 i$ ($E_0 = constant > 0$) at t = 0. If λ_0 is its De Broglie wavelength initially, then its de-broglie wavelength at time t i

(1) $\lambda_o \left(1 + \frac{eE_o}{mV_o}t\right)$ (2) $\lambda_o t$ (3) $\frac{\lambda_o}{\left(1 + \frac{eE_o}{mV_o}t\right)}$ (4) λ_o

21. For a radioactive material, half-life is 10minutes. If initially there are 600 number of nuclei, the time tak (in minutes) for the disintegration of 450 nuclei is

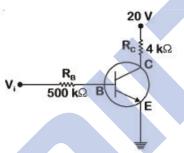
(1) 10 **(2)** 30 **(3)** 20 **(4)** 15

22. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is (1) 1:-1 (2) 2:-1 (3) 1:1 (4) 1:-2

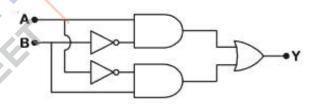
23. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, to maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to v_0 , the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is

(1) 1:4 (2) 4:1 (3) 1:2 (4) 2:1

24. Unpolarised light is incident from air on a plane surface of a material of refractive index 'μ'. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Whis of the following options is correct for this situation?


(1) Reflected light is polarised with its electric vector perpendicular to the plane of incidence

 $(2) i = \sin^{-1}\left(\frac{1}{\mu}\right)$


(3) Reflected light is polarised with its electric vector parallel to the plane of incidence

 $\mathbf{(4)} \qquad \qquad \mathbf{i} = \tan^{-1} \left(\frac{1}{\mu} \right)$

- **25.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) Large focal length and small diameter (2) Large focal length and large diameter
 - (3) Small focal length and large diameter (4) Small focal length and small diameter
- 26. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the ligused is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation betweether slits needs to be changed to
 - (1) 1.9 mm
- (2) 2.1 mm
- (3) 1.8 mm
- (4) 1.7 mm
- 27. In the circuit shown in the figure, the input voltage V_i is 20V, V_{BE} = 0 and V_{CE} = 0. The values of I_B , I_C a β are given by

- (1) $I_B = 25 \mu A$, $I_C = 5 mA$, $\beta = 200$
- (2) $I_B = 20 \mu A, I_C = 5 mA, \beta = 250$
- (3) $I_B = 40 \mu A, I_C = 10 mA, \beta = 250$
- (4) $I_B = 40 \mu A, I_C = 5 mA, \beta = 125$
- 28. In a p-n junction diode, change in temperature due to heating
 - (1) Affects only forward resistance
 - (2) Does not affect resistance of p-n junction
 - (3) Affects only reverse resistance
 - (4) Affects the overall V I characteristics of p-n junction
- 29. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) $A \Box B + \overline{A} \Box B$
- $(2) \qquad \overline{A} \overline{B} + A \overline{B}$
- (3) $\overline{A}\overline{B}$
- $(4) \qquad \overline{A} + \overline{B}$
- 30. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 339 m/s
- (2) 350 m/s
- (3) 330 m/s
- (4) 300 m/s

31.	The elect	rostatic f	orce h	-4 41	. 1 1 .	_				
J1.	and area A, is									
	(1)	•		ortional to the			-	1 .		
	(2) (3)	•		o the square ro f the distance l			between the	plates		
	(4)	-		ortional to the		-	the plates			
32.	field E. T	The direct	ion of it thro the pro	electric field in ough the same oton is	s now reve	rsed, ke	eping its ma	ignitude the	lly upward directs same. A proton electron, in com	ı is allow
33.			ng fron	n the roof of a	sufficiently			s moving fr	eely to and fro li	ke a sim
	•		_		•	_		_	a distance of 5	
	•			period of osci	llation is	(2)	2	(4)	(O)	
	(1)	πS	(2)	2s		(3)	$2\pi s$	(4)	18	
34.	makes ar	angle of t when a	30° w magne	ith the horizor	ntal. The roluction 0.2.	d is not	allowed to	slide down	oth inclined pland by flowing a cur I direction. The	rrent
	(1)	5.98 A	(2)	14.76 A		(3)	7.14 A	(4)	11.32 A	
35.		-						_	nsitivity (angula	ır
	deflectio (1)	n per unit 25Ω	(2)	ge applied) is 2 250Ω	20 div/V. 1	(3)	tance of the 40Ω	galvanome (4)	ter is $500 \ \Omega$	
36.	A thin di	amagnetic	c rod is	s placed verticed on, then the	diamagnet	en the p	ooles of an el	ectromagno	et. When the cur	
				vitational poter	ntial energy	7. The w	ork required	d to do this	comes from	
	(1) (2)	The mag	_	neid acture of the m	aterial of t	he rod				
	(3)	The curi			acciai oi t	ne rou				
	(4)	The indu	uced el	lectric field du	e to the ch	anging	magnetic fie	ld		
37.	An induc	tor 20 ml	Н, а са	pacitor 100 μ	F and a res	istor 50	Ω are conn	nected in se	ries across a sou	rce of en
	V = 10 s	in 314 t. T	The po	wer loss in the	circuit is					
	(1)	0.43 W	(2)	2.74 W	(3)	0.79 V	W (4) 1.13	W	
38.	The pow	ver radiat	ed by	a black body	is P and	it radia	ntes maximu	ım energy	at wavelength,	λ_0 . If 1

power radiated by it becomes nP. The value of n is

(1)

temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_o$, 1

39. Two wires are made of the same material and have the same volume. The first wire has cross-sectional at A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?

(1)

6 F

(2)

4 F

(3)

9 F

(4)

A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to visco force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to

 \mathbf{r}^2

 r^5 **(2)**

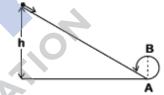
(3)

F

A sample of 0.1 g of water at 100°C and normal pressure (1.013 × 10⁵ Nm⁻²) requires 54 cal of heat energy 41. to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is

(1)

208.7 J (2)


42.2 J

(3)

104.3 J

84.5 J

42. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

(1) D

 $\frac{3}{2}$ D **(3)**

Three objects, A: (a solid sphere), B: (a thin circular disk) and C: (a circular ring), eachhave the same ma 43. M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amount of work (W) required to bring them to rest, would satisfy the relation

 $W_A > W_B > W_C$ **(1)**

(2) $W_B > W_A > W_C$ (4) $W_A > W_C > W_B$

 $W_C > W_B > W_A$ **(3)**

44. A moving block having mass m, collides with another stationary block having mass 4m. The lighter blo comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be

(1)

0.25

(2)

0.8

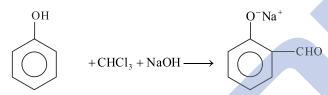
(3)0.5

(4) 0.4

- 45. Which one of the following statements is incorrect?
 - Limiting value of static friction is directly proportional to normal reaction. **(1)**
 - Frictional force opposes the relative motion. **(2)**
 - **(3)** Rolling friction is smaller than sliding friction.
 - **(4)** Coefficient of sliding friction has dimensions of length.

Section - II (CHEMISTRY)

Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

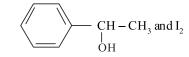

	Column 1				Column II	
(a)	Co^{3+}			(i)	$\sqrt{8}$ B.M.	
(b)	Cr^{3+}			(ii)	$\sqrt{35}$ B.M.	
(c)	Fe^{3+}			(iii)	$\sqrt{3}$ B.M.	
(d)	Ni^{2+}			(iv)	$\sqrt{24}$ B.M.	
				(v)	$\sqrt{15}$ B.M.	
	a	b	c		d	
(1)	(i)	(ii)	(iii)		(iv)	
(2)	(iv)	(i)	(ii)		(iii)	
(3)	(iv)	(v)	(ii)		(i)	
(4)	(iii)	(v)	(i)		(ii)	
Iron	n carbonyl, Fe(C	O)5 is				P
				(0)		V

- 47.^E
 - **(1) (2)** mononuclear
 - trinuclear
- (3) tetranuclear (4)
 - di-nuclear
- The type of isomerism shown by the complex [CoCl₂(en)₂] is 48.^E
 - **(1)** Coordination isomerism
- **(2)** Ionization isomerism
- **(3)** Geometrical isomerism
- **(4)** Linkage isomerism
- **49.** Which one of the following ions exhibits d-d transition and paramagnetism as well?
 - **(1)** $Cr_{2}O_{2}^{2-}$
- MnO_{4}^{-}
- CrO_4^{2-}
- **(4)** MnO_4^{2-}
- 50.^M The geometry and magnetic behavior of the complex [Ni(CO)₄] are
 - **(1)** tetrahedral geometry and diamagnetic
 - **(2)** square planar geometry and paramagnetic
 - square planar geometry and diamagnetic **(3)**
 - **(4)** tetrahedral geometry and paramagnetic
- 51.^M A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H₂SO₄. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - **(1)** 3.0
- **(2)** 2.8
- **(3)** 1.4
- 4.4 **(4)**

- **52.** The difference between amylose and amylopectin is:
 - Amylose have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage **(1)**
 - **(2)** Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
 - Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \alpha$ -linkage **(3)**
 - **(4)** Amylose is made up of glucose and galactose

- **53.** Regarding cross-linked or network polymers, which of the following statements is *incorrect*?
 - (1) They are formed from bi and tri-functional monomers.
 - (2) Examples are bakelite and melamine
 - (3) They contain covalent bonds between various linear polymer chains
 - (4) They contain strong covalent bonds in their polymer chains.
- **54.** E Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In electrophilic substitution reactions amino group is meta directive.
 - (2) In absence of substituents nitro group always goes to m-position
 - (3) In spite of substituents nitro group always goes to only m-position
 - (4) In acidic (strong) medium aniline is present as anilium ion
- **55.** Which of the following oxides is most acidic in nature?
 - (A) BeO
- **(B)** BaO
- (C) MgO
- **(D)** Ca(

56. In the reaction


The electrophile involved is

- (1) formyl cation ($\overset{\oplus}{C}HO$)
- (2) dichloromethyl anion (CHCl₂)
- (3) dichloromethyl cation $(CHCl_2)$
- (4) dichlorocarbene (:CCl₂)
- **57.** Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of carboxylate ion
 - (2) more extensive association of carboxylic acid via van der Waals force of attraction
 - (3) formation of intramolecular H-bonding
 - (4) formation of intermolecular H-bonding
- **58.** Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively

(2)

(4)

$$CH_2 - CH_2 - OH \text{ and } I_2$$

$$H_3C$$
 CH_2 – OH and I_2

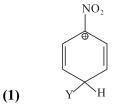
 CH_3 OH and I_2

59. The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order.

- (1) $C_2H_5OH, C_2H_5Cl, C_2H_5ONa$
- (2) $C_2H_5Cl, C_2H_6, C_2H_5OH$
- (3) $C_2H_5OH, C_2H_6, C_2H_5C1$
- (4) $C_2H_5OH, C_2H_5ONa, C_2H_5Cl$
- **60.** Which oxide of nitrogen is *not* a common pollutant introduced into the atmosphere both due to natural at human activity?
 - (1) NO₂
- (2) N₂O
- (3) N_2O_5
- (4) NO
- **61.** Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - **(1)**
- $CH_2 = CH_2$
- **(2)**
- $CH_3 CH_3$
- (3) $CH \equiv CH$
- (4) CH₄

62.^E The compound C₇H₈ undergoes the following reactions:

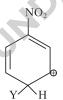
$$C_7H_8 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$


The product 'C' is

(1) o-bromotoluene

(2) 3-bromo-2,4,6-trichlorotoluene

(3) m-bromotoluene


- (4) p-bromotoluene
- **63.** Which of the following carbocations is expected to be most stable?

(2)

(3)

(4)

- **64.** Which of the following is correct with respect to -I effect of the substituents? (R = alkyl)
 - $(1) \qquad -NR_2 < -OR < -F$

(2) $-NH_2 > -OR > -F$

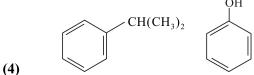
(3) $-NH_2 < -OR < -F$

- (4) $-NR_2 > -OR > -F$
- **65.**^E Which of the following molecules represents the order of hybridization sp², sp, sp from left to right atoms?
 - (1) $CH_2 = CH C \equiv CH$
- (2) $CH_2 = CH CH = CH_2$
- (3) $HC \equiv C C \equiv CH$
- (4) $CH_3 CH = CH CH_3$
- **66.** Identify the major products P, Q and R in the following sequence of reactions:

P

Q

R


СНО

COOH

(1)

CH₂CH₂CH₃ CHO

(3) $CH_3CH_2 - OH$

 $CH_3 - CO - CH_3$

- **67.** Which of the following compounds can form a zwitterion?
 - (1) Acetanilide
- (2) Benzoic acid
- (3) Aniline

CH₃CH(OH)CH₃

- (4) Glycine
- **68.** Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
 - a. $60 \text{mL} \frac{\text{M}}{10} \text{HCl} + 40 \text{mL} \frac{\text{M}}{10} \text{NaOH}$
- **b.** $55\text{mL}\frac{\text{M}}{10}\text{HCl} + 45\text{mL}\frac{\text{M}}{10}\text{NaOH}$
- c. $75\text{mL}\frac{M}{5}\text{HCl} + 25\text{mL}\frac{M}{5}\text{NaOH}$
- **d.** $100\text{mL}\frac{M}{10}\text{HCl} + 100\text{mL}\frac{M}{10}\text{NaOH}$

pH of which one of them will be equal to 1?

- (1) a
- (2)
- **(3)** 1
- (4)
- **69.** On which of the following properties does the coagulating power of an ion depend?
 - (1) Size of the ion alone
 - Both magnitude and sign of the charge on the ion
 - The magnitude of the charge on the ion alone
 - (4) The sign of charge on the ion alone
- **70.** Given van der Waals constant for NH₃, H₂, O₂ and CO₂ are respectively 4.17, 0.244, 1.36 and 3.59, whic one of the following gases is most easily liquefied?
 - (1) H₂
- **(2)**

- (3) NH₃
- (4) CO_2
- **71.** The solubility of BaSO₄ in water is 2.42×10^{-3} gL⁻¹ at 298 K. The value of its solubility product (K_{sp}) wi be (Given molar mass of BaSO₄ = 233 g mol⁻¹)
 - (1) $1.08 \times 10^{-12} \text{ mol}^2 \text{L}^{-2}$

(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{L}^{-2}$

(3) $1.08 \times 10^{-10} \text{ mol}^2 \text{L}^{-2}$

- (4) $1.08 \times 10^{-8} \text{ mol}^2 \text{L}^{-2}$
- 72. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1:0.5:1. ΔH for the formation of XY is -200 kJ mol⁻¹. The bond dissociation energy of X_2 will be
 - (1) 100 kJ mol⁻¹
- (2) 800 kJ mol⁻¹

 O_2

- (3) 200 kJ mol^{-1}
- (4) 400 kJ mol⁻¹

73. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction

- (1) Is doubled
- (2) Is tripled
- (3) Is halved
- (4) Remains unchanged

74. E For the redox reaction

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+}2CO_2 + H_2O$$

the correct coefficients of the reactants for the balanced equation are

	MnO_4^-	$C_2O_4^{2-}$	H^{+}
(1)	2	5	16
	_		_

- (2) 2 16 5
- (3) 16 5 2 (4) 5 16 2

75. Which one of the following conditions will favor maximum formation of the product in the reaction,

$$A_2(g) + B_2(g) \square X_2(g); \Delta_r H = -X kJ$$
?

- (1) Low temperature and low pressure
- (2) High temperature and high pressure
- (3) Low temperature and high pressure
- (4) High temperature and low pressure

76. The correction factor 'a' to the ideal gas equation corresponds to

- (1) Volume of the gas molecules
- (2) Electric field present between the gas molecul
- (3) Density of the gas molecules
- (4) Forces of attraction between the gas molecule

77. The correct order of N-compounds in its decreasing order of oxidation states is

- (1) HNO_3 , NO, NH_4Cl , N_2
- (2) HNO_3 , NH_4Cl , NO, N_2
- (3) HNO₃, NO, N₂, NH₄Cl
- (4) NH₄Cl, N₂, NO, HNO₃

78. Which one of the following elements is unable to form MF_6^{3-} ion?

- (1) Al
- 2) 1
- (3) Ga
- (4) In

79. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?

- (1) Zn
- (2) Mg
- (3) Fe
- (4) Cu

80. E The correct order of atomic radii in group 13 elements is

- $(1) \qquad B < Al < Ga < In < Tl$
- (2) B < Ga < Al < Tl < In
- $(3) \qquad B < Al < In < Ga < Tl$
- (4) B < Ga < Al < In < Tl

81. Which of the following statements is *not* true for halogens?

- (1) All are oxidizing agents
- (2) All but fluorine show positive oxidation states
- (3) All form monobasic oxyacids
- (4) Chlorine has the highest electron-gain enthalpy

82.^E In the structure of ClF₃, the number of lone pair of electrons on central atom 'Cl' is

- **(1)** Two
- **(2)** Four
- (3) One
- (4) Three

- 83. The correct difference between first and second order reactions is that
 - (1) The half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - (2) A first-order reaction can catalyzed; a second-order reaction cannot be catalyzed
 - (3) The rate of a first-order reaction does not depend on reactant concentrations; the rate of a secon order reaction does depend on reactant concentrations
 - (4) The rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- **84.** Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) $CaH_2 < BeH_2 < BaH_2$
- (2) $BeH_2 < BaH_2 < CaH_2$
- (3) $BeH_2 < CaH_2 < BaH_2$
- (4) $BaH_2 < BeH_2 < CaH_2$
- **85.** In which case is number of molecules of water maximum?
 - (1) 0.18 g of water

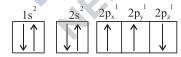
(2) 0.00224 L of water vapours at 1 atm and 273

(3) 18 mL of water

- $(4) 10^{-3} mol of water$
- **86.** Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

$$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} BHrO$$

$$Br^{-} \xleftarrow{1.0652 \text{ V}} Br_{2}^{-} \xrightarrow{1.595 \text{ V}}$$


Then the species undergoing disproportionation is

- (1) BrO_4^-
- (2) Br₂
- (3) BrO₃⁻
- **(4)** HBrO
- 87. Consider the following species: CN⁺, CN⁻, NO and CN

Which one of these will have the highest bond order?

- (1) CN⁻
- 2) CN
- (3) NO
- (4) CN

- **88.** Which one is a *wrong* statement?
 - (1) An orbital is designated by three quantum numbers while an electron in an atom is designated I four quantum numbers
 - (2) The electronic configuration of N atom is

- (3) Total orbital angular momentum of electron in 's' orbital is equal to zero
- (4) The value of m for d_z^2 is zero
- **89.**^M Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remaindens the constant with temperature) is
 - $(1) \qquad \frac{4\sqrt{3}}{3\sqrt{2}}$
- $(2) \qquad \frac{3\sqrt{3}}{4\sqrt{2}}$
- $(3) \qquad \frac{\sqrt{3}}{\sqrt{2}}$
- (4) $\frac{1}{2}$

90. ^E	configu	ium reacts wit	$1s^22s^22p^3,$	the simplest f	ormula 1	for this comp	pound is		state electro	
	(1)	MgX_2	(2)	Mg_2X	(3)	Mg_2X_3	(4)	Mg_3X_2		
Se	ction -	III (BIOLOG	Y)							
91.	Pollen (1)	grains can b -80°C	e stored (2)	for several –196°C	years (3)	in liquid -120°C	nitrogen l	naving a 1 -160°C	-	
92.	Oxygen (1) (3)	is not produced Nostoc Green sulphu	01	·	(2) (4)	Cycas Chara				
93.	What is (1) (2) (3) (4)	It is a nucleotide source for ATP synthesis. It functions as an enzyme.								
94.	Which o	of the following Sodium	elements (2)	is responsible Potassium	for main (3)	ntaining turg Magnes		Calciun	ı	
95.		one of the formula one of the two of Yucca	_	-				with a spo	ecies of mo	
96.	In which (1) (3)	n of the followin Ferrous Ferric	ng forms i	s iron absorbe	(2)	Free ele	ment ric and ferro	vus		
97.98.	(1) (2) (3) (4) A "new'	Fusion of two Fusion of two Syngamy and variety of rice	male gar male gar triple fus was paten	nete with two netes with one netes of a poll	polar nu egg en tube	with two dif		s have been	present in In	
	for a lor (1) (3)	ng time. This is Sharbati Sono Co-667			(2) (4)	Lerma F Basmati	=			
99.	In India, for publ (1) (2) (3) (4)	Council for S Research Cor Indian Counc	cientific a nmittee or il of Med	ible for assess and Industrial I n Genetic Mar ical Research (ppraisal Comr	Research aipulation	n (CSIR) n (RCGM)	oducing gen	etically mod	lified organis	

100.	Which of lymphoc	_	g is com	imonly used as	a vect	or for introduci	ing a D	NA fragment in hum
	(1)	Ti plasmid	(2)	λ phage	(3)	Retrovirus	(4)	pBR 322
101.	country a	and its people is		nal companies a				sation from the concern
	(1)	Biopiracy			(2)	Biodegradation		
	(3)	Bio-infringeme	ent		(4)	Bioexploitation	n	
102.	The correct (1) (2) (3) (4)	Annealing, Ext Denaturation, I Extension, Der Denaturation, A	tension, I Extension naturation	Denaturation n, Annealing n, Annealing	eaction (PCR) is		
103.	Select the	e correct match						
	(1) (3)	$F_2 \times Recessive$ Ribozyme	parent Nucle	•	(2) (4)	T.H. Morgan G. Mendel		sduction sformation
104.	Niche is (1) the physical space where an organism (2) the range of temperature that the organism needs to live (3) all the biological factors in the organism's environment (4) the functional role played by the organism where it lives							
105.	Which of	the following is	a second	ary pollutant?		<		
	(1)	CO_2	(2)	SO_2	(3)	CO	(4)	O_3
106.	Natality (1) (2) (3) (4)	Birth rate Number of ind Death rate		leaving the habitentering a habita		,		
107.	World O	zone Day is cele	brated or	n				
	(1)	21 st April			(2)	16 th September	r	
	(3)	5 th June			(4)	22 nd April		
108.								
	(1)	Pyramid of ene	ergy		(2)	Upright pyram	id of nu	mbers
	(3)	Inverted pyram	nid of bio	omass	(4)	Upright pyram	id of bio	omass
109.	molecula	r oxygen?		_			_	of ozone and release
	(1)	Cl	(2)	Fe	(3)	Carbon	(4)	Oxygen

110.	Which of	f the following pa	airs is w	vrongly mat	ched?				
	(1)	ABO blood grou	uping	: Co-domi	nance				
	(2)	XO type sex		: Grasshop	pper				
		determination							
	(3)	Starch synthesis	s in pea:	Multiple a	lleles				
	(4)	T.H. Morgan		: Linkage					
111.	Select the	e correct statemen	nt						
	(1)	Punnett square	was dev	eloped by a	British scien	ntist			
	(2)	Spliceosomes ta	ike part	in translatio	on				
	(3)	Franklin Stahl c	oined th	he term "lin	kage"				
	(4)	Transduction wa	as disco	overed by S.	Altman				
112.	The expe	rimental proof fo	r semi-	conservativ	e replication	of DNA was firs	t shown	in a	
	(1)	Bacterium	(2)	Plant	(3)	Fungus	(4)	Virus	
113.	Select the	e correct match			•			7	
	(1) Alfred Hershey and Martha Chase - TMV								
	(2)								
	(3)	Alec Jeffreys –					P		
	(4)	Francois Jacob	_	_		n)'		
114	Off4						r		
114.		re produced by			(2)	Devil			
	(1)	Mitotic division			(2)	Parthenocarpy			
	(3)	Meiotic divisio	ns		(4)	Parthenogenesi	S		
115.	Which of	the following flo	owers o	nly once in	its life-time?				
	(1)	Jackfruit			(2)	Mango			
	(3)	Bamboo species	3		(4)	Papaya			
				11					
116.	Which of	the following ha	s prove	d helpful in	preserving p	oollen as fossils?			
		Cellulosic intine	_			Oil content			
	(3)	Pollenkitt			(4)	Sporopollenin			
117.	Secondar	y xylem and phlo	oem in o	dicot stem a	re produced	hv			
117.	(1)	Vascular cambi		aicot steili a	(2)	Phellogen			
	(3)	Apical meristen			(4)	Axillary merist	ems		
	(0)	ripical moristen	.10		(-)	Tarmery mense	C 1115		
118.	Plants ha	ving little or no s	econda	ry growth a	re				
	(1)	Deciduous angie	osperms	S	(2)	Conifers			
	(3)	Grasses			(4)	Cycads			
119.	Sweet po	tato is a modified	1						
	(1)	Adventitious ro			(2)	Tap root			
	(3)	Stem			(4)	Rhizome			
100					· /				
120.		ophores occur in	1 1		(A)	<i>a</i> :			
	(1)	Free-floating hy	arophy	tes	(2)	Carnivorous pla	ants		

	(3)	Halophytes			(4)	Submerged hy	drophyt	es	
121.	Casparia	n strips occur in							
	(1)	Pericycle			(2)	Cortex			
	(3)	Epidermis			(4)	Endodermis			
122.		f the following s							
	(1)	-	_	prous, while <i>Sal</i> v	<i>vinia</i> is h	omosporous			
	(2) (3)	Horsetails are			in ovmn	ognermg			
	(4)		Ovules are not enclosed by ovary wall in gymnosperms Stems are usually unbranched in both <i>Cycas</i> and <i>Cedrus</i>						
123.		e wrong stateme	-		,				
123.	(1)	-		Basidiomycetes					
	(2)		_	otory and feedin	ıg structı	ures in Sporozoa	ns		
	(3)	-		nembers of Fung				4	
	(4)	Mitochondria are the powerhouse of the cell in all kingdoms except Monera							
124.	Match th	e items given in	Column	I with those in 0	Column	II and select the	correct	option given below:	
		Column I		Column II					
	a.	Herbarium	(i)	It is a place have	ving a co	ollection of prese	erved pl	ants and animals	
	b.	Key	(ii)					cies found in an area wi	
				brief description	n aiding	identification			
	c.	Museum	(iii)	Is a place wher	e dried a	and pressed plan	t specin	nens mounted on sheets	
				are kept		Y			
	d.	Catalogue	(iv)	A booklet cont	aining a	list of character	s and th	eir alternates which are	
				helpful in ident	tification	of various taxa	•		
		a b	c	d					
	(1)	(ii) (ii)	(i)	(iv)					
			(iii)						
	(2)	(ii) (iv)		(i)					
	(3)	(i) (iv)	(iii)	(ii)					
	(4)	(iii) (iv)	(i)	(ii)					
125	After Izer	waaamu fallawa	d by ma	iogia Cnoras ara	, n noduo	ad awa gamayaliy	in		
125.	(1)	yogamy tonowe Alternaria	(2)	iosis. Spores are <i>Agaricus</i>	(3)	Neurospora	(4)	Saccharomyces	
137			. ,	J	\ **}	_F	₹ -7	, 202	
126.	winged j	pollen grains are <i>Cycas</i>	(2)	ın Mango	(3)	Mustard	(4)	Pinus	
105		•			(-)	20000000	(')		
127.	Which of (1)	ne is wrongly ma Biflagellate zo		. Brown algae	(2)	Gemma cups	_ Mav	chantia	
	(3)	Uniflagellate g	-	•	(4)	Unicellular org			
	* *			· 1	• /		-		

128.	The two f	functional groups charac	cteristic of sugars	are			
	(1)	Carbonyl and methyl		(2)	Carbonyl and p	-	
	(3)	Hydroxyl and methyl		(4)	Carbonyl and h	ydroxy]	
129.	Which of	the following is not a pr	roduct of light re	action of	f photosynthesis	?	
	(1)	NADH (2)	NADPH	(3)	ATP	(4)	Oxygen
130.	Which an	nong the following is no	ot a prokaryote?				
	(1)	Mycobacterium		(2)	Nostoc		
	(3)	Saccharomyces		(4)	Oscillatoria		
131.	Stomatal	movement is not affecte	ed by				
	(1)	Light		(2)	O ₂ concentration	n	
	(3)	Temperature		(4)	CO ₂ concentrat	ion	
132.	The Golg	i complex participates in	n				
	(1)	Formation of secretory		(2)	Respiration in l	oacteria	
	(3)	Fatty acid breakdown		(4)	Activation of a	_	
133.	Which of	the following is true for	r nucleolus?				
1001	(1)	It is a membrane-bound					
	(2)	It takes part in spindle)'	
	(3)	Larger nucleoli are pres		ells	16		
	(4)	It is a site for active rib	osomal RNA syı	nthesis			
134.	The stage	during which separation	n of the paired h	omologo	us chromosomes	s begins	is
20.0	(1)	Diplotene (2)	Diakinesis	(3)	Pachytene	(4)	Zygotene
135.	Stomata i	n grass leaf are		6.			
	(1)	Kidney shaped		(2)	Rectangular		
	(3)	Dumb-bell shaped	,,,)	(4)	Barrel shaped		
136.	Nissl's he	odies are mainly compos	sed of				
150.	(1)	DNA and RNA	sed of	(2)	Nucleic acids a	nd SER	
	(3)	Proteins and lipids		(4)	Free ribosomes		
137.	Which o	f these statements is inco	orrect?				
137.	(1)	Glycolysis occurs in cy					
	(2)	Glycolysis operates as		plied wit	h NAD that can	pick up	hydrogen atoms
	(3)	Enzymes of TCA cycle	e are present in m	nitochono	drial matrix		
	(4)	Oxidative phosphorylar	tion takes place i	n outer i	nitochondrial mo	embrane	e
138.	Which of	the following terms des	scribe human den	tition?			
	(1)	Thecodont, Diphyodon	t, Heterodont				
	(2)	Pleurodont, Monophyo	dont, Homodont				
	(3)	Thecodont, Diphyodon					
	(4)	Pleurodont, Diphyodon	nt, Heterodont				
139.	Select the	e incorrect match:					

	(1)	Allosomes	-	Sex chr	omosor	mes
	(2)	Submetacentric	-	L-shap	ed chror	mosomes chromosomes
	(3)	Lampbrush	-			lents chromosomes
	(4)	Polytene	-	Oocyte	s of chr	omosomes amphibians
1.40	W/la: ala a £	24h - C-11in	4	:		d-ulii
140.		the following events Protein glycosylation		cur in re	_	Cleavage of signal peptide
	(1)		1		(2) (4)	
	(3)	Protein folding			(4)	Phospholipid synthesis
141.	Many ri	ibosomes may assoc	iate with	a single	e mRN	A to form multiple copies of a polypepti
	simultane	eously. Such strings of	f ribosomes	s are terr	ned as	
	(1)	Polyhedral bodies			(2)	Plastidome
	(3)	Polysome			(4)	Nucleosome
142.	All of the	e following are part of	f an operon	excent		
1.2.	(1)	structural genes	an operon	Спосре	(2)	an enhancer
	(3)	an operator			(4)	a promoter
	. ,	-				
143.			dition on or	ne of her	X chro	mosomes. This chromosome can be inherited b
	(1)	Only sons			(2)	Only grandchildren
	(3)	Only daughters			(4)	Both sons and daughters
144.	Accordir	ng to Hugo de Vries, t	he mechan	ism of ev	volution	is
	(1)	Saltation			(2)	Phenotypic variations
	(3)	Multiple step mutati	ions		(4)	Minor mutations
1 45	ACCTA	TCCCAT :	C. 41.	43	-4 . 1 -	C
145.		nscribed mRNA?	ce from the	coding s	strang of	f a gene. What will be the corresponding sequer
		UGGTUTCGCAT		(2)	ACCLI	AUGCGAU
	(1) (3)	AGGUAUCGCAU		(2)		UAGCGUA
	(3)	AGGUAUCGCAU		(4)	UCCA	UAUCUUA
146.			mn I with t	hose in (Column	II and select the correct option
	given bel	ow:				
		Column I			Colum	ın II
	a.	Proliferative Phase	•		i.	Breakdown of endometrial lining
	b.	Secretory Phase			ii.	Follicular Phase
	c.	Menstruation			iii.	Luteal Phase
		a b c				
	(1)	i iii ii				
	(2)	ii iii i				
	(3)	iii ii i				
	(4)	iii i ii				
147.			pulation in	nteraction	ns is wic	dely used in medical science for the production
	antibiotic				(0)	P 11
	(1)	Mutualism			(2)	Parasitism
	(3)	Commensalism			(4)	Amensalism
148.	All of the	following are include	ed in 'ex-sit	tu conser	vation'	except

	(1)	Sacred groves		(2)	Botanicai garde	ens				
	(3)	Wildlife safari par	rks	(4)	Seed banks					
140	Matah tha	itams givan in Cal	umn I with those in Co	olumn II	and colout the a	orroat o	ntion given helevy			
147.	Match the	Column-I	uniii i with those in Co	Colum		المالك	phon given below.			
	a.	Eutrophication	i.		radiation					
	b.	Sanitary landfill	ii.	Defore						
	c.	Snow blindness	iii.		nt enrichment					
	d.	Jhum cultivation	iv.		disposal					
	u.	a b	c	d	aispesai					
	(1)	(i) (iii)	(iv)	(ii)						
	(2)	(iii) (iv)	(i)	(ii)						
	(3)	(ii) (i)	(iii)	(iv)						
	(4)	(i) (ii)	(iv)	(iii)						
150.	In a grov	ving population of	a country,				O ,			
	(1)	reproductive indiv	viduals are less than th	e post-re	eproductive indiv	viduals.				
	(2)	reproductive and p	pre-reproductive indiv	iduals a	re equal in numb	er.				
	(3)	pre-reproductive i	ndividuals are more th	nan the r	eproductive indi	viduals.				
	(4)	pre-reproductive i	ndividuals are less that	n the re	productive indiv	iduals.				
151.	151. Which part of poppy plant is used to obtain the drug "Smack"?									
	(1)	Latex (2		(3)	Flowers	(4)	Leaves			
152.	Among tl	ne following sets of	f examples for diverge	ent evolu	ution, select the i	ncorrect	ontion:			
	(1)	Heart of bat, man		(2)	Brain of bat, m		=			
	(3)	Forelimbs of man,		(4)	Eye of octopus					
153.	Which of	the following is no	ot an autoimmune dise	ase?						
	(1)	Rheumatoid arthri		(2)	Alzheimer's dis	sease				
	(3)	Psoriasis		(4)	Vitiligo					
154.	In which	disease does moso	quito transmitted patho	gen cau	se chronic inflan	nmatior	of lymphatic vessels?			
	(1)	Ascariasis		(2)	Ringworm dise		• •			
	(3)	Elephantiasis		(4)	Amoebiasis					
155.	Conversi	on of milk to curd i	improves its nutritiona	l value l	by increasing the	amoun	t of			
	(1)	Vitamin A		(2)	Vitamin B ₁₂					
	(3)	Vitamin D		(4)	Vitamin E					
156.	The simil	arity of bone struct	ture in the forelimbs o	f many	vertebrates is an	example	e of			
	(1)	Analogy		(2)	Convergent evo	olution				
	(3)	Homology		(4)	Adaptive radiat	ion				
157.	Which o	f the following cha	racteristics represent "	'Inherita	_	ups' in l	numans?			
	a.	Dominance		b.	Co-dominance					
	c.	Multiple allele		d.	Incomplete dor	ninance				

e.

Polygenic inheritance

	(1)	a,b and c	(2)	b, d and e					
	(3)	b, c and e	(4)	a, c and e					
158	Hormones	secreted by the placenta to maintain preg	maney a	re					
130.	(1)	hCG, hPL, estrogens, relaxin, oxytocin	snancy a						
	(2)	hCG, hPL, progestogens, estrogens							
	(3)	hCG, hPL, progestogens, prolactin							
	(4)	hCG, progestogens, estrogens, glucocor	ticoids						
			ticolas						
159.		raceptive 'SAHELI'							
	(1)	increases the concentration of estrogen a	and prev	ents ovulation in females.					
	(2)	is an IUD.							
	(3)	blocks estrogen receptors in the uterus,	preventi	ng eggs from getting implanted.					
	(4)	is a post-coital contraceptive.		7. 7					
160.	The amni	on of mammalian embryo is derived from	n	1,0					
	(1)	endoderm and mesoderm	(2)	mesoderm and trophoblast					
	(3)	ectoderm and mesoderm	(4)	ectoderm and endoderm					
161.	The difference between spermiogenesis and spermiation is								
101.	(1) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.								
	(2)			ls are released into the cavity of seminiferous					
	(-)	tubules, while in spermiation spermatoz							
	(3)			e in spermiation spermatozoa are formed.					
	(4)								
	()	Sertoli cells into the cavity of seminifered							
1.0	XXII : 1 (NA 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•						
162.		the following is an amino acid derived h	ormone [*]						
	(1)	Ecdysone (2) Estradiol		(3) Epinephrine (4) Estriol					
162	Which of	the following structures or regions is inc	orrootly	poired with its functions?					
103.	(1)		•	connect different regions of brain; controls					
	(1)	movement.	iat iiiter	connect different regions of brain, controls					
	(2)		hormone	es and regulation of temperature, hunger and					
	(2)	thirst		and regulation of temperature, hanger and					
	(3)	Medulla oblongata: controls respiration	and care	liovascular reflexes					
	(4)	Corpus callosum: band of fibers connect							
		•		•					
164.		parent lens in the human eye is held in its	•	•					
	(1)	ligaments attached to the iris	(2)	smooth muscles attached to the iris					
	(3)	ligaments attached to the ciliary body	(4)	smooth muscles attached to the ciliary body					
165.	Which of	the following hormones can play a signi	ficant ro	le in osteoporosis?					
	(1)	Progesterone and Aldosterone	(2)	Estrogen and Parathyroid hormone					
	(3)	Aldosterone and Prolactin	(4)	Parathyroid hormone and Prolactin					

- **166.** Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
 - (1) Increased number of bronchioles; Increased respiratory surface
 - (2) Increased respiratory surface; Inflammation of bronchioles
 - (3) Inflammation of bronchioles; Decreased respiratory surface
 - (4) Decreased respiratory surface; Inflammation of bronchioles
- **167.** Match the items given in Column I with those in Column II and select the correct option given below:

Column I Column II a. Tricuspid valve i. Between left atrium and left ventricle b. ii. Between right ventricle and pulmonary artery Bicuspid valve c. iii. Between right atrium and right ventricle Semilunar valve b (i) (iii) (ii) (1) (iii) (2) (i) (ii) (3) (iii) (i) (ii) (4) (ii) (i) (iii)

168. Match the items given in Column I with those in Column II and select the correct option given below:

	Column 1			Column II
a.	Tidal volume	2		i. 2500 - 3000 mL
b.	Inspiratory R volume	eserve		ii. 1100- 1200 mL
c.	Expiratory R volume	eserve		iii. 500 - 550 mL
d.	Residual volu	ıme		iv. 1000- 1100 mL
	a 1	b	c	d
(1)	iii :	i	iv	ii
(2)	i	iv	ii	iii
(3)	iii	ii	i	iv
(4)	iv	iii	ii	i

169. Which of the following gastric cells indirectly help in erythropoiesis?

(1) Mucous cells (2) Goblet cells (3) Chief cells (4) Parietal cells

170. Match the items given in Column I with those in Column II and select the correct option given below:

	Co	lumn 1		Column II		
a.	Fil	orinogen		(i) Osmotic balance		
b.	Globulin Albumin			(ii) Blood clotting(iii) Defence mechanism		
c.						
	a	b	c			
(1)	(i)	(ii)	(iii)			
(2)	(i)	(iii)	(ii)			

(3)	(iii)	(ii)	(i)
(4)	(ii)	(iii)	(i)

171. Which of the following is an occupational respiratory disorder?

(1) Silicosis

(2) Botulism

(3) Anthracis

(4) Emphysema

172. Calcium is important in skeletal muscle contraction because it

- (1) Activates the myosin ATPase by binding to it.
- (2) Detaches the myosin head from the actin filament.
- Binds to troponin to remove the masking of active sites on actin for myosin.
- (4) Prevents the formation of bonds between the myosin cross bridges and the actin filament.

173. Match the items given in Column I with those in Column II and select the correct option given below:

		Colun	nn I			Column II
a.		Glyco	suria		i.	Accumulation of uric acid in joints
b.		Gout			ii.	Mass of crystallised salts within the kidney
c.		Renal calculi			iii.	Inflammation in glomeruli
d.		Glome	erular n	ephritis	iv.	Presence of glucose in urine
		a	b	c	d	1012
(1	1)	i	ii	iii	iv	
(2	2)	ii	iii	i	iv	
(3	3)	iii	ii	iv	i	,0
(4	4)	iv	i	ii	iii	

174. Match the items given in Column I with those in Column II and select the correct option given below:

		Colum	ın I		Colum	in II		
(Function)					(Part of Excretory system)			
a.	Ultraf	iltration			i.	Henle's loop		
b.	Conce	ntration	of urine		ii.	Ureter		
c.	Transp	ort of ur	rine		iii.	Urinary bladder		
d.	Storage	e of urin	e		iv.	Malpighian corpuscle		
					v.	Proximal convoluted tubule		
		a	b	C	d			
(1)	iv	i	ii	iii			
(2)	\mathbf{v}	iv	i	ii			
(3)	iv	\mathbf{v}	ii	iii			
(4)	\mathbf{v}	iv	i	iii			

- 175. Which of the following features is used to identify a male cockroach from a female cockroach?
 - (1) Presence of caudal styles
 - (2) Forewings with darker tegmina
 - (3) Presence of a boat shaped sternum on the 9th abdominal segment
 - (4) Presence of anal cerci
- 176. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system
 - (1) Reptilia
- (2) Aves
- (3) Amphibia
- (4) Osteichthyes

- **177.** Which one of these animals is not a homeotherm?
 - (1) Chelone

(2) Camelus

(3) *Macropus*

- (4) Psittacula
- 178. Which of the following organisms are known as chief producers in the oceans?
 - (1) Diatoms

(2) Cyanobacteria

(3) Dinoflagellates

- (4) Euglenoids
- 179. Which of the following animals does not undergo metamorphosis?
 - (1) Tunicate
- **(2)** Moth
- (3) Earthworm
- (4) Starfish

- 180. Ciliates differ from all other protozoans in
 - (1) having a contractile vacuole for removing excess water
 - (2) using pseudopodia for capturing prey
 - (3) using flagella for locomotion
 - (4) having two types of nuclei

NEET: 2018 - Paper Code

ANSWER KEY

PHYSICS		CHEMISTRY		BIOLOGY				
Q 1	1	Q 46	3	Q 91	2	Q 136	4	
Q 2	1	Q 47	1	Q 92	3	Q 137	4	
Q 3	4	Q 48	3	Q 93	1	Q 138	1	
Q 4	4	Q 49	4	Q 94	2	O 139	4	
Q 5	1	Q 50	1	Q 95	1	Q 140	4	
Q 6	4	Q 51	2	Q 96	1	Q 141	3	
Q 7	4	Q 52	3	Q 97	4	Q 142	2	
Q 8	4	Q 53	4	Q 98	4	Q 143	4	
Q 9	3	Q 54	4	Q 99	4	Q 144	1	
Q 10	3	Q 55	1	Q 100	3	Q 145	3	
Q 11	1	Q 56	4	Q 101	1	Q 146	2	
Q 12	3	Q 57	2	Q 102	4	Q 147	4	
Q 13	1	Q 58	2	Q 103	3	Q 148	1	
Q 14	3	Q 59	4	Q 104	4	Q 149	2	
Q 15	3	Q 60	3	Q 105	4	Q 150	3	
Q 16	1	Q 61	4	Q 106	1	Q 151	1	
Q 17	1	Q 62	3	Q 107	2	Q 152	4	
Q 18	1	Q 63	2	Q 108	3	Q 153	2	
Q 19	4	Q 64	1 & 3	Q 109	1	Q 154	3	
Q 20	3	Q 65	1	Q 110	3	Q 155	2	
Q 21	3	Q 66	4	Q 111	1	Q 156	3	
Q 22	1	Q 67	4	Q 112	1	Q 157	1	
Q 23	3	Q 68	4	Q 113	4	Q 158	2	
Q 24	1	Q 69	2	Q 114	1	Q 159	3	
Q 25	2	Q 70	3	Q 115	3	Q 160	3	
Q 26	1	Q 71	3	Q 116	4	Q 161	4	
Q 27	4	Q 72	2	Q 117	1	Q 162	3	
Q 28	4	Q 73	1	Q 118	3	Q 163	1	
Q 29	1	Q 74	1	Q 119	1	Q 164	3	
Q 30	1	Q 75	3	Q 120	3	Q 165	2	
Q 31	3	Q 76	4	Q 121	4	Q 166	3	
Q 32	3	Q 77	3	Q 122	3	Q 167	3	
Q 33	1	Q 78	2	Q 123	2	Q 168	1	
Q 34	4	Q 79	2	Q 124	4	Q 169	4	
Q 35	2	Q 80	4	Q 125	2	Q 170	4	
Q 36	3	Q 81	2	Q 126	4	Q 171	1	
Q 37	3	Q 82	1	Q 127	3	Q 172	3	
Q 38	2	Q 83	1	Q 128	4	Q 173	4	
Q 39	3	Q 84	3	Q 129	1	Q 174	1	
Q 40	2	Q 85	3	Q 130	3	Q 175	1	
Q 41	1	Q 86	4	Q 131	2	Q 176	2	
Q 42	4	Q 87	1	Q 132	1	Q 177	1	
Q 43	3	Q 88	2	Q 133	4	Q 178	1	
Q 44	1	Q 89	2	Q 134	1	Q 179	3	
Q 45	4	Q 90	4	Q 135	3	Q 180	4	